0 avis
Options exotiques, lois infiniment divisibles et processus de Lévy : aspects théoriques et pratiques
Université Lille 1 2012 - 99 p.
Cette thèse comporte trois parties indépendantes. La première traite des formes fermées de la factorisation de Wiener-Hopf pour les processus de Lévy. Nous recensons la demie-douzaine de cas pour lesquels la factorisation peut être écrite explicitement, et mettons l'accent sur les fonctions méromorphes ayant des pôles d'ordre deux. La deuxième partie se focalise sur l'inversion de la transformée de Laplace. Son but est de présenter une nouvelle méthode approximative, dans un contexte
...
probabiliste. Si la transformée de Laplace a un comportement facilement identifiable en zéro et si la densité associée est bornée, alors cette méthode permet d'obtenir une borne uniforme pour l'erreur commise sur la fonction de répartition. L'efficacité de cette méthode est testée sur deux exemples non triviaux. Enfin, la troisième et dernière partie est dédiée au pricing d'options exotiques dans le modèle log-stable aux moments finis de Carr et Wu. Dans certains cas, il est possible d'obtenir des formules fermées sous forme de séries convergentes pour les prix d’options lookback et barrières. Pour tous les autres cas, nous étudions divers techniques de simulation pour les trajectoires du processus sous-jacent, dans le but d'une évaluation par méthode de Monte-Carlo.
Lire la suite